

Higgs Boson properties status and prospects

Fabio Cerutti – LBNL

Outline

- Current SM Higgs results at LHC:
 - Higgs properties: including *latest* (HCP+Council) results
 - Mass, Spin/CP and Couplings
- Prospects for measurement of properties
 - High Luminosity-LHC: Couplings (Mass and Spin/CP in backup)
 - Comparison with future e⁺e⁻ colliders
- Conclusions

LHC 2012 operation

Excellent LHC performance in 2012

 L_{peak} up to $7.7x10^{33}$ cm⁻² s⁻¹ at 8 TeV

 $L_{integrated} \sim 23 \text{ fb}^{-1} \text{ delivered}$

Total 2011-2012 ~ 29 fb⁻¹ delivered

>90% will end up in physics results

SM Higgs Boson Production and Decay at LHC

Higgs boson production at LHC

g	Gluon-Fusion		8 TeV		
	$(gg \to H)$ Loop – Top coupling BSM contribution?	$M_{H}(125$ GeV)	o(fb)	$\delta(th)_{TOT}$	δσ/δM(.5GeV)
q'	VBF Tree level $W(/Z)$ V coupling	dev)			
W,Z H W,Z	(qq H)	ggH	19.5×10^3	11-15%	0.8%
q		MDE	1 50 102	20/	0.407
$eeeee$ \bar{t}	$t \bar{t} H$ Tree level top coupling	VBF	1.58×10^3	3%	0.4%
t \bar{t} $-H$ \bar{t}		WH	697	4%	1.3%
	WH Tree level W coupling	ZH	394	5%	1.3%
$q \longrightarrow q' \longrightarrow H$	Tree level w coupling	ttH	130	11-14%	1.9%
	ZH Tree level Z coupling				

- Cross-sections are LARGE: LHC is the first Higgs Factory \rightarrow Produced H~600k/Exp.
- Theory systematics more relevant for ggH and ttH Mass dependency very weak

Higgs boson decay at LHC

- Experimentally accessible:
 - bb, ττ, WW*, ZZ*, γγ, Zγ, μμ
- $\Gamma_{\rm H}$ ~4MeV NO direct measure at LHC

$M_H=125 \text{ GeV}$					
Process	Branching ratio	Uncertainty			
$H \rightarrow bb$	5.77 x 10-1	+3.2%	-3.3%		
$H \rightarrow \tau \tau$	6.32 x 10-2	+5.7%	-5.7%		
$H o \mu \mu$	2.20 x 10-4	+6.0%	-5.9%		
$H \rightarrow cc$	2.91 x 10-2	+12.2%	-12.2%		
$H \rightarrow gg$	8.57 x 10-2	+10.2%	-10.0%		
$H \rightarrow \gamma \gamma$	2.28 x 10-3	+5.0%	-4.9%		
$\textbf{\textit{H}} \rightarrow \textbf{\textit{Z}} \textbf{\textit{y}}$	1.54 x 10-3	+9.0%	-8.8%		
$H \rightarrow WW$	2.15 x 10-1	+4.3%	-4.2%		
$H \rightarrow ZZ$	2.64 x 10-2	+4.3%	-4.2%		
Γ _H [GeV]	4.07 x 10-3	+4.0%	-3.9%		

Mass dependency:

- $\delta BR(bb)/0.5 \text{ GeV} \rightarrow 1\%$
- $\delta BR(WW)/0.5 \text{ GeV} \rightarrow 4\%$
- $\delta BR(ZZ)/0.5 \text{ GeV} \rightarrow 4\%$

SM Higgs Boson ATLAS and CMS current results

Latest results 5 "main" channels $\gamma\gamma$, $ZZ^* \rightarrow 4\ell$, $WW^* \rightarrow \ell\nu\ell\nu$, $\tau\tau$, Vbb

CMS <u>ZZ*, WW*, ττ, bb: 12 fb-1 2012</u> γγ as PLB

Both Experiments: $\sim 7\sigma - ZZ^* \rightarrow 4\ell$, WW* $\rightarrow \ell \nu \ell \nu$ and $\gamma \gamma \sim 3\sigma$

CMS: Vbb and $\tau\tau \sim 2\sigma$

Mass Measurement

Only Missing SM observable: From $\gamma\gamma$ and $ZZ^*(4l)$ mass spectrum

ATLAS: $M_H = 125.2 \pm 0.3_{stat} \pm 0.6_{sys}$ GeV

CMS: $M_H = 125.8 \pm 0.4_{stat} \pm 0.4_{sys}$ GeV

Signal strength $\mu = \sigma BR/\sigma BR_{SM}$

ATLAS ZZ*, WW*, γγ, ττ, bb: 13fb⁻¹ - 2012

ATLAS $\mu = 1.35 \pm 0.24$

CMS ZZ*, WW*, ττ, bb: 12 fb⁻¹ 2012 γγ as PLB

CMS $\mu = 0.88 \pm 0.21$

Agreement with SM prediction (and CMS/ATLAS) Precision already ~20%

Spin/CP

- $ZZ^* \rightarrow 4\ell$ sensitive to Spin and CP properties
 - Complete set of kinematic variables (8)
 - CMS: Combined in a ME-based discriminant: pseudo-MELA
 - ATLAS: Two methods used a) MVA based on BDT + b) pseudo-MELA

Spin/CP

$ZZ^* \rightarrow 4\ell$ Test Data Compatibility with 0^- vs 0^+

ATLAS: 0 Excluded at 2.3 σ (exp 1.7)

CMS: 0^{-} Excluded at 2.5σ (exp 1.9)

*Results on 0+ vs Spin 2 models in Backup: in general 0+ favored

The Couplings fit

- Basic ingredient Yields per category/channel (e.g., VBF 2J-tag of $H \rightarrow \gamma \gamma$)
 - Production modes: gg, VBF, W/ZH, ttH + Final states: γγ, WW, ZZ, bb, ττ, Zγ, μμ
- Follow prescription form LHC-XS working group assuming:
 - Only one resonance + Narrow Width Approx. + SM Lagrangian tensor structure (also implies CP=0+)
- Observed yields parameterized SM prediction x coupling scaling factors κ^2
 - SM equivalent to all $\kappa=1$
- This simplified approach is sufficient for Today's available statistics

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

$$(\sigma \cdot BR) (gg \to H \to \gamma \gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \cdot \frac{\kappa_{g}^{2} \cdot \kappa_{\gamma}^{2}}{\kappa_{H}^{2}}$$

The Couplings fit

- Loop contributions can:
 - Expressed as a function of SM couplings
 - Treated as free parameter (test possible BSM contributions)

- Total width Γ_H two kind of assumptions
 - Only SM particles contribute to $\Gamma_{\rm H}(\Gamma_{\rm i})$
 - Measure ratio of couplings

Production modes

$$\frac{\sigma_{\text{ggH}}}{\sigma_{\text{ggH}}^{\text{SM}}} = \begin{cases} \kappa_{\text{g}}^{2}(\kappa_{\text{b}}, \kappa_{\text{t}}, m_{\text{H}}) \\ \kappa_{\text{g}}^{2} \end{cases}$$
(3)

$$\frac{\sigma_{\text{VBF}}}{\sigma_{\text{VBF}}^{\text{SM}}} = \kappa_{\text{VBF}}^2(\kappa_{\text{W}}, \kappa_{\text{Z}}, m_{\text{H}}) \tag{4}$$

$$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}} = \kappa_{\rm W}^2 \tag{5}$$

$$\frac{\sigma_{\rm ZH}}{\sigma_{\rm ZH}^{\rm SM}} = \kappa_{\rm Z}^2 \tag{6}$$

$$\frac{\sigma_{\rm t\bar{t}\,H}}{\sigma_{\rm t\bar{t}\,H}^{\rm SM}} = \kappa_{\rm t}^2 \tag{7}$$

LHC-XS wg

Detectable decay modes

$$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_W^2$$

$$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} \ = \ \kappa_Z^2$$

$$\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} = \kappa_b^2$$

$$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma_{\tau^-\tau^+}^{SM}} = \kappa_{\tau}^2$$

$$\frac{\overline{M}_{\tau^{+}}}{\overline{M}_{SM}} = \kappa_{\tau}^{2}$$

$$= \begin{cases} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa^{2} \end{cases}$$

 $\kappa^2_{yy} = (1.6 \, \kappa^2_W + 0.07 \, \kappa^2_t - 0.67 \, \kappa_W \kappa_t)$

κ_F vs κ_V fit

- Assumption only SM particles in $\Gamma_{\rm H} \rightarrow \kappa^2_{\rm H} (\kappa_{\rm F} \, \kappa_{\rm V}) \sim 0.7 \, \kappa^2_{\rm F} + 0.3 \, \kappa^2_{\rm V}$ <u>Agreement</u> with SM tested at 20-30%
- $\kappa_F = 0$ (Fermiophobic Higgs) Excluded at (much) more than 3σ

Higgs Boson properties: High Luminosity LHC and future e⁺e⁻ colliders

Couplings at HL-LHC: CMS

- Mainly based on extrapolation of current analyses plus dedicated $H \rightarrow \mu\mu$
- Projection assumptions:
 - Scenario 1: all systematic + theory uncertainty kept unchanged
 - Scenario 2: exp. systematics scaled 1/sqrt(L) and theory by ½ (see backup slides ..)
- $ZZ^* \rightarrow 4\ell$ and $\gamma\gamma$ and $\mu\mu$ channels: Scenario 2 ~realistic from Exp. Point of view
- ττ, bb, WW: Experimental systematics on backgrounds dominant, data driven but need extrapolation to signal region ...

Couplings fit at HL-LHC

CMS

	Uncertainty (%)				
Coupling	$300 \; {\rm fb^{-1}}$		300 fb^{-1} 3000 fb^{-1}		fb^{-1}
	Scenario 1	Scenario 2	Scenario 1	Scenario 2	
κ_{γ}	6.5	5.1	5.4	1.5	
$\kappa_{\gamma} \ \kappa_{V}$	5.7	2.7	4.5	1.0	
κ_g	11	5.7	7.5	2.7	
κ_b	15	6.9	11	2.7	
κ_t $\kappa_ au$	14	8.7	8.0	3.9	
$\kappa_{ au}$	8.5	5.1	5.4	2.0	

CMS Projection

Assumption NO invisible/undetectable contribution to $\Gamma_{\rm H}$:

- Scenario 1: system./Theory err. unchanged w.r.t. current analysis
- Scenario 2: systematics scaled by $1/\sqrt{L}$, theory errors scaled by $\frac{1}{2}$
- ✓ Loop couplings: γγ at 2-5% level + gg at 3-8% level
- ✓ down-type fermion couplings at 2-10% level
- ✓ direct top coupling at 4-8% level

Couplings at HL-LHC: ATLAS

- MC Samples at 14 TeV from dedicated HL Fast-Simulation: estimate of physic objects dependency on pile-up
 - Validated with full-sim. up to $\mu \sim 50$
- In addition to "current" analyses dedicated HL ones:
 - $ttH \rightarrow \gamma \gamma$ Direct top Y coupling
 - H $\rightarrow \mu\mu$ Second generation F coupling
 - HH→ bbyy Higgs Self-Couplings

κ_{μ} and κ_{t} Coupling at HL-LHC

Narrow mass peak over Z/DY backg.

ATLAS and CMS > 5σ /Exper. μ ~20%/Exper. $\rightarrow \kappa_{\mu}$ at 10%/Exper Very Robust channel Good S/B With 3000 fb⁻¹ Measure κ_t at 10%/Eper.

Higgs self-couplings λ_{HHH}

- Need to distinguish between HH production via H or V (negative interference)
 - CMS: HH → bbγγ or HH → bbμμ (HE-LHC)
 - ATLAS: HH \rightarrow bbyy (under study HH \rightarrow bbtt)
- Example ATLAS analysis bbyy Simple analysis $M_H=125$ GeV:
 - Cuts on Pt 2 γ (40/25) and 2 b-jets (25) and relative angles
 - $50 < M_{bb} < 130 \text{ GeV} 120 < M_{\gamma\gamma} < 130 \text{ GeV}$
- Signal[$\lambda_{HHH}=1$]=15, Signal[$\lambda_{HHH}=0$]=26, Background = 24 (mainly ttH)
 - 1 Experiment: $\sim 1.6\sigma$ significance for $\lambda_{HHH}=1 \rightarrow 2$ Experiments $\sim 2.2\sigma$
- Only one channel and very simple CUT-based analysis:

we can do better

HL-LHC summary

Approved LHC 300 fb⁻¹ at 14 TeV:

- Mass: <100 MeV (statistical)
- Coupling κ rel. precision*
 - Z, W, b, τ 10-15%
 - t, μ 3-2 σ observation
 - γγ and gg 5-11%

HL-LHC 3000 fb-1 at 14 TeV:

- Mass: ~ <50 MeV (statistical)
- Couplings κ rel. precision*
 - Z, W, b, τ, t, μ 2-10%
 - $\gamma\gamma$ and gg 2-5%
 - H \rightarrow HH >2-3 σ obs. (2 Exper.)

*Assuming sizeable (1/2) reduction of theory errors

"QCD scale" go to Higher order QCD computation? gg "PDF" from LHC data?

Mass Measurement:

Several exp./theory challenges to reach 50 MeV ($e/\gamma/\mu$ calibration E-scale, Interference, FSR, ..) More details on analyses backup slides

Higgs Properties at e⁺e⁻ L/C colliders

More details Higgs factories: linear vs circular collider FERMILAB

https://indico.fnal.gov/conferenceOtherViews.py?view=standard&confId=5775

• Options for **Higgs factory** at $E_{CM} \sim 250 GeV$ Threshold $M_H + M_Z$

$$\sigma(e^+e^- \rightarrow ZH)_{Max} \sim 0.2 \text{ pb}$$
 t.b.c. with $\sim 60 \text{pb}$ at LHC-14 TeV

• Machine related issues discussed in next talks by John and Jean-Pierre

Patric Janot	ILC	LEP ₃	TLEP
Lumi / IP / 5 yrs	250 fb ⁻¹	500 fb ⁻¹	2.5 ab ⁻¹
# IP	1	2 - 4	2 - 4
Lumi / 5 years	0.25 ab ⁻¹	1 - 2 ab ⁻¹	5 - 10 ab ⁻¹

Higgs Precision measurements at e⁺e⁻ colliders

<u> </u>	_		
Patric Janot	ILC	LEP ₃ (4)	TLEP (4)
σ _{н7}	2.5%	1.3%	0.4%
BR(H→bb)	2.7%	1.4%	0.5%
BR(H→cc)	7-3%	4% (*)	1.4%
BR(H→gg)	8.9%	4.5% (*)	1.5%
BR(H→WW*)	8.6%	3.0%	1.0%
BR(H→ττ)	7.0%	3.0%	0.9%
BR(H→ZZ*)	21%	7.1%	3.1%
BR(H→γγ)	30%	6.8%	3.0%
BR(H→μμ)	-	28%	13%
σ _{ww→H}	12%	5% (*)	2.2%
Γ_{H},Γ_{INV}	10%,<1.5%	4%,<0.7%	1.8%, < 0.3%
m _H	40 MeV	26 MeV	8 MeV

ILC vs HL-LHC

ILC Will Measure $\Gamma_{\rm H}$, $\Gamma_{\rm Inv}$

Higgs to everything/ $H \rightarrow ZZ^* \rightarrow 10-2\%$

HL-LHC competitive or better then **ILC** for:

 $H \rightarrow \gamma \gamma$, $H \rightarrow gg$, tt-H, $H \rightarrow \mu \mu$, $(H \rightarrow HH ?)$

ILC better than **HL-LHC**:

 $\Gamma_{H,inv}$, H \rightarrow bb, cc, $\tau\tau$

TLEP Better or similar to **HL-LHC** for all couplings but ttH

Alain Blondel – Physics overview summary talk

Conclusions

- LHC started precision measurement campaign of the *newly* discovered "SM Higgs-like" boson
 - Mass measured at 3 per mill level
 - Spin/CP: first studies favors 0⁺ in VB final states
 - Couplings: in agreement with SM predictions
 - slight tension from ATLAS in γγ final state: updates coming soon
- HL-LHC CRUCIAL step towards *deeper understanding* of Higgs properties:
 - top coupling, second generation fermions, gg and γγ Loop-couplings sensitive to BSM physics (H self-coupling very challenging)
- Next generation e^+e^- collider (L/C) complementary to LHC:
 - $\Gamma_{\text{H-Tot}} \Gamma_{\text{invisible}}$ and $\Gamma_{\text{b.c}}$
 - High Luminosity 5-10 ab⁻¹ important for LARGE improvements

Backup

SM Higgs Boson Prospects at High Luminosity LHC Mass, spin/CP, ...

The Couplings roadmap

Test Higgs boson couplings depending on available L:

- Total signal yield μ: tested at 20% (κ tested at 10%)
- Couplings to Fermions and Vector Bosons 20-30%
- *Loop couplings tested at 40%
- *Custodial symmetry W/Z Couplings tested at 30%
- Test Down vs Up fermion couplings
- Test Lepton vs Quark fermion couplings
- Top Yukawa direct measurement ttH: κ_t
- Test second generation fermion couplings: κ_{μ}
- Higgs self-couplings couplings HHH: $\kappa_{\rm H}$

Today

7+8 TeV ~ 30 fb⁻¹

LHC Upgrade 14/33 TeV ~ 3000 fb⁻¹

*results in backup slides

Theory Errors

- Quite large in gg and ttH production $\sim 15\%$ Contributions:
 - QCD scale~8%
 - PDF+ $\alpha_s \sim 7\%$
- Prospects:
 - gg QCD scale uncertainty: $\sim 8\%$ @NNLO $\rightarrow \sim 5\%$ @NNNLO
 - E.g., see Anastasious http://www.ggi.fi.infn.it/talks/talk2773.pdf
 - PDF+ $\alpha_s \sim 7\% \rightarrow <5\%$ with fit to LHC data
 - Jet, top, prompt- γ , $Z \rightarrow d\sigma/dP_t$ contribute to gluon PDF
- Factor ~2 reduction on main theory errors very challenging but possible

HL-LHC mass measurement

- Mass measurement in $ZZ^* \rightarrow 4\ell$ and $\gamma\gamma$:
 - Statistical error down to ~ 50 (~ 15) MeV in 4 ($\gamma\gamma$) /Experiment
 - Systematics more difficult to predict:
 - γγ: Photon Energy scale at the moment 600 MeV
 - 4l: calibrated with $Z\rightarrow II$ (Huge statistics) Today 200-300 MeV
- "Educated guess": 50 MeV achievable at HL-LHC

Spin/CP

- Several channels observables sensitive to Spin and CP properties
- Production and Decay angles of different final states
 - $\gamma\gamma$ decay angle $\cos\theta$ *
 - WW* set of kinematic variables
 - ZZ* complete set of kinematic variables (8)
 - VBF production $\rightarrow \Delta \Phi jj$
 - $VH \rightarrow bb M_{VH}$
- Spin 0⁺ SM all observable can be predicted:
 - Strategy: Use SM-0⁺ as benchmark to test agreement with Spin/CP sensitive observables

Spin/CP

- Several spin=2 models can already be rejected with modest luminosity combining several final state
- CP in V sector can be studied with $H \rightarrow ZZ \rightarrow 41$
- General parameterization of CP amplitude:

$$A(X \to VV) \sim \left(a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_\mu (q_1 + q_2)_\nu + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta\right) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$$

• Complex form factors a_i:

- SM tree level $a_1=1$, $a_2=a_3=0$
 - Generated at loop level a_2 (~few %) and a_3 (~10-10)
- CP violation requires $(a_1 \text{ OR } a_2 \neq 0) \text{ AND } (a_3 \neq 0)$

- \square H \rightarrow ZZ* \rightarrow 41 is sensitive to Spin and CP
- ☐ Observables: 5 Cabibbo-Masksymowicz angles, recon. ℓℓ masses

 \square Expect to have ~3 σ separation (0⁺ vs 0⁻) for 30fb⁻¹ using BDT

Spin/CP: ATLAS

Integrated	tegrated Signal (S) and		6i	4 + 4i
Luminosity	Background (B)			
100 fb^{-1}	S = 158; B = 110	3.0	2.4	2.2
200 fb^{-1}	S = 316; B = 220	4.2	3.3	3.1
300 fb^{-1}	S = 474; B = 330	5.2	4.1	3.8

- Sensitivity to CP odd a₃ coupling vs L
- High luminosity can allow CP studies in Higgs sector via ZZ to 4l final state (very robust against pile-up)

Signal Strength: μ at 300 fb⁻¹

CMS Projection

300 fb⁻¹ at 14 TeV

Red: Scenario 1 Black: Scenario 3

Theory errors dominant for γγ

Most difficult channel bb

Measurements at:

μ~10-20% κ ~5-10%

Similar results obtained by ATLAS (backup slides)

κ_V vs κ_F prospects

Solid: Scenario 1 Dashed: Scenario 3

Assumes no BSM physics in total width Without theory errors better than 5% Can reduce impact of theory uncertainty and

assumptions looking at ratio

ATLAS

	$300 \mathrm{fb}^{-1}$	$3000 \mathrm{fb^{-1}}$
κ_V	3.0% (5.6%)	1.9% (4.5%)
κ_F	8.9% (10%)	3.6% (5.9%)

Test Fermion and Vector Boson couplings at 4-6% level!

High Luminosity LHC: the detector upgrades

- Both detectors are planning **important upgrades** to stand the harsher running conditions at HL-LHC: pile-up, rates, radiation damage
 - Pile-up \sim 4-5 times more pile-up then today
- Plan: keep detector performance for main physics objects at the same level as we have today
 - Improved trigger system
 - New tracking systems
 - Improved forward detectors
 - •
- Not discussed in this talk but CRUCIAL to profit of L increase

Signal of and Yields: HL/HE

٧s	(lev)
$8 \rightarrow 14 \text{ TeV: ggH } \times 2.6$	$14 \rightarrow 33$ TeV: ggH → HH x6

Process	3000 fb ⁻¹ 14 TeV	300 fb ⁻¹ 33 TeV
ggH → γγ	350k	123k
ggH→4ℓ	19k	6.7k
ttH → γγ	42k	30k
ttH→4ℓ/μμ	0.2k/0.4k	0.16k/0.3k
ggH→HH→bbγγ	270	160

LHC upgrades give access to <u>rare decays</u> Better signal Yields at HL-LHC BUT Pile-up and S/B better at HE-LHC

CMS studies 300 fb⁻¹

CMS Projection

Global fit to main Higgs couplings Assumed NO invisible/undetectable contribution to $\Gamma_{\rm H}$

- Scenario 1: sys. unchanged
- Scenario 2: sys. 1/sqrt(L), theory errors divided by 2

к measured at 5-15%

ATLAS studies: μ at HL-LHC

Signal strength µ

- Dashed chart indicates theory unc.
 Contribution:
 - Dominant for **ZZ** and γγ final states: hope to improve on that or consider ratios
- Extrapolation of WW and ττ is more difficult since dominated by bkg.

 Systematics:
- ZZ, $\gamma\gamma$, $\tau\tau \sim 10\%$ (below with reduced theory errors or ratios)
- ttH ~20% (10% on coupling)

Coupling Ratios Fit at HL-LHC

- Fit to coupling ratios:
 - No assumption BSM contributions to Γ_H
 - Some theory systematics cancels in the ratios
- Loop-induced Couplings γγ and gg treated as independent parameter (BSM)
 - κ_{v}/κ_{z} (γγ Loop BSM) tested at 2%
 - gg loop (BSM) κ_t/κ_g at 7-12%
 - 2nd generation ferm. κ_u/κ_Z at 8%

SM Higgs Boson Prospects at High Luminosity LHC cross-sections, Partial widths...

Higgs boson production at LHC

- Main production mode: ggH
- Access to top (direct and Loop), W and Z couplings via production cross section

Higgs boson production at LHC

8 TeV

M _H (125 GeV)	σ(fb)	$\delta(th)_{TOT}$	δ(th) _{QCD-Scale}	$\delta(th)_{PDF+\alpha s}$	δσ/δM(.5GeV)
ggH	19.5×10^3	11-15%	8%	7%	0.8%
VBF	1.58×10^3	3%	0.2%	3%	0.4%
WH	697	4%	0.5%	4%	1.3%
ZH	394	5%	1.5%	4%	1.3%
ttH	130	11-14%	7%	8%	1.9%

- Cross-sections are LARGE: LHC is the first Higgs Factory \rightarrow Produced H~600k/Exp.
- Theory systematics more relevant for ggH and ttH Mass dependency very weak

Signal XS evolution

√s (TeV)

	M _H =125 GeV 14 TeV				
Process	Cross section	Scale un	certainty	PDF+α _s un	certainty
ggF ^a	50.35 pb	+7.5%	-8.0%	+7.2%	-6.0%
VBF b	4.172 pb	+0.4%	-0.3%	+1.9%	-1.5%
WH °	1.504 pb	+0.3%	-0.6%	+3.8%	-3.8%
ZH °	0.8830 pb	+2.7%	-1.8%	+3.7%	-3.7%
ttH ^c	0.6113 pb	+5.9%	-9.3%	+8.9%	-8.9%

- $8 \rightarrow 14 \text{ TeV}$
 - Higgs σ 2.6 higher
 - tt σ 3.9 higher

- 8 → 33 TeV
 - Higgs σ 9.2 higher
 - tt σ 22 higher

10⁻⁶

10⁻⁶

10

SM Higgs Boson Prospects at LHC Mass, spin/CP, ...

LHC 2012 operation!

CMS Integrated Luminosity, pp

 $L_{\rm peak}$ up to 7.7x10 $^{33}\,$ cm $^{-2}\,s^{-1}$ at 8 TeV $L_{\rm integrated} \sim 23~fb^{-1}$ delivered

Total 2010-2012 \sim 29 fb⁻¹ delivered

LHC operated with 50ns bunch spacing:

• 2012 pile-up conditions challenging

Detectors and LHC operation

ATLAS - 2012

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.3%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	100%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	96.0%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	98.2%

- ATLAS and CMS in very good shape: Fraction of Active Channels >96%
- 90% of delivered luminosity used in physics analysis

Latest HCP + Council results

Mass Measurement

ATLAS tension between $\gamma\gamma$ and $ZZ^*(4l)$ mass measurements

Studies in DEEP details: Agreement evaluated at 2.3-2.70

Depending on assumption on systematics PDF's for Energy Scale (Box vs Gauss)

Mass Measurement

ATLAS slight tension between $\gamma\gamma$ and $ZZ^*(4l)$ mass measurements

Muon Mass Scale

Signal Strength vs Mass

ATLAS slight tension between $\gamma\gamma$ and $ZZ^*(4l)$ mass measurements

Signal strength dependency is mild (Mainly ZZ*)

Mass Measurement: full picture

Private COMBINATION

Weighted average of averages

Possible correlations between 2 experiments SYSTEMATICS NOT taken into account

Mass(GeV)

Impact of mass error on LHC yields pred.: less than 4% (WW/ZZ most sensitive)

Spin/CP

$ZZ^* \rightarrow 4\ell$ Test Compatibility with 2- (Specific Model) vs 0+

ATLAS: 2 Disfavored at 1.9σ (Expected 1.7)

Spin/CP

 $H \rightarrow \gamma \gamma$ final state decay angle $\cos \theta^*$ can be used to measure Spin

ATLAS: graviton-like 2⁺_m Disfavored at 1.4σ (exp 1.8) assuming 100% gg production

SM Higgs Boson Coupling fits results

Partial Widths in SM

- SM Higgs ($v = 246 \text{ GeV from } G_F$):
 - $\Gamma_{\rm ff}$ α $(m_{\rm f}/v)^2$
 - $\Gamma_{WW} \alpha (2 M_W^2/v)^2$
 - Γ_{ZZ} α $(M_Z^2/v)^2$
 - $\Gamma_{\rm HH}$ α $(M_{\rm H}^2/v)^2$
 - Γ_{yy} $\alpha (1.6 \Gamma_{WW} + 0.07 \Gamma_{tt} 0.7 \Gamma_{Wt})$ \rightarrow Wt interference
 - Γ_{gg} $\alpha (1.1 \Gamma_{tt} + 0.01 \Gamma_{bb} 0.12 \Gamma_{bt})$ \rightarrow bt interference
 - Γ_{Zy} α (1.12 Γ_{WW} + 0.003 Γ_{tt} 0.12 Γ_{Wt}) \rightarrow Wt interference
- $\Gamma_{\rm H}$ (125 GeV) = 4 MeV (dominated by bb ~57%)

The Couplings fit

- Basic ingredient Yields per category:
 - Production modes: gg, VBF, W/ZH, ttH
 - Final states: γγ, WW, ZZ, bb, ττ, Zγ, μμ

κ_F vs κ_V fit

Couplings to Fermion and Vector boson sectors: κ_F vs κ_V

- All Fermion couplings scale with the same factor $\kappa_F (= \kappa_t = \kappa_b = \kappa_\tau = ...)$
- All Boson couplings scale with the same factor $\kappa_V (= \kappa_W = \kappa_Z)$
- Assumption only SM particles in $\Gamma_{\rm H} \rightarrow \kappa^2_{\rm H} (\kappa_{\rm F} \kappa_{\rm V}) \sim 0.7 \kappa^2_{\rm F} + 0.3 \kappa^2_{\rm V}$

Boson	Boson and fermion scaling assuming no invisible or undetectable widths					
Free par	Free parameters: $\kappa_{\rm V} (= \kappa_{\rm W} = \kappa_{\rm Z}), \kappa_{\rm f} (= \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm \tau}).$					
	${ m H} o \gamma \gamma$	$H \to ZZ^{(*)} \mid H \to WW^{(*)}$	$H \to b\overline{b} H \to \tau^- \tau^+$			
$\frac{ggH}{t\overline{t}H}$	$\frac{\kappa_{\rm f}^2 \cdot \kappa_{\rm \gamma}^2(\kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm f}, \kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_i)}$	$\frac{\kappa_{\mathrm{f}}^2 \cdot \kappa_{\mathrm{V}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$	$\frac{\kappa_{\mathrm{f}}^2 \!\cdot\! \kappa_{\mathrm{f}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$			
VBF WH ZH	$\frac{\kappa_{\mathrm{V}}^2 \cdot \kappa_{\mathrm{\gamma}}^2(\kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{V}})}{\kappa_{\mathrm{H}}^2(\kappa_{i})}$	$\frac{\kappa_{\mathrm{V}}^2 \cdot \kappa_{\mathrm{V}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$	$\frac{\kappa_{\mathrm{V}}^2 \cdot \kappa_{\mathrm{f}}^2}{\kappa_{\mathrm{H}}^2(\kappa_i)}$			

Custodial Symmetry $\lambda_{WZ} = k_W/k_Z$

- Testing Custodial Symmetry W vs Z couplings
- Move to fit of RATIOs (can relax assumption on total width)
 - $\lambda_{WZ} = \kappa_W / \kappa_Z$
 - Two additional parameters λ_{FZ} κ_{ZZ} in the fit but with small correlation with λ_{WZ}

Probin	Probing custodial symmetry without assumptions on the total width					
Free par	Free parameters: $\kappa_{ZZ} (= \kappa_Z \cdot \kappa_Z / \kappa_H), \lambda_{WZ} (= \kappa_W / \kappa_Z), \lambda_{FZ} (= \kappa_f / \kappa_Z).$					
	$\mathrm{H} ightarrow \gamma \gamma$ $\mathrm{H} ightarrow \mathrm{ZZ^{(*)}}$ $\mathrm{H} ightarrow \mathrm{WW^{(*)}}$ $\mathrm{H} ightarrow \mathrm{b\overline{b}}$ $\mathrm{H} ightarrow \tau^- \tau^+$					
$\frac{ggH}{t\overline{t}H}$	$\kappa_{\mathrm{ZZ}}^2 \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{\mathrm{ZZ}}^2\lambda_{FZ}^2$	$\kappa_{\mathrm{ZZ}}^2 \lambda_{FZ}^2 \cdot \lambda_{\mathrm{WZ}}^2$	$\kappa_{\mathrm{ZZ}}^2 \lambda_{FZ}^2 \cdot \lambda_{FZ}^2$		
VBF	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2 (1, \lambda_{\mathrm{WZ}}^2) \cdot \kappa_{\gamma}^2 (\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{\mathrm{WZ}})$	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2 (1, \lambda_{\mathrm{WZ}}^2)$	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2 (1, \lambda_{\mathrm{WZ}}^2) \cdot \lambda_{\mathrm{WZ}}^2$	$\kappa_{\mathrm{ZZ}}^2 \kappa_{\mathrm{VBF}}^2 (1, \lambda_{\mathrm{WZ}}^2) \cdot \lambda_{FZ}^2$		
WH	WH $\kappa_{\rm ZZ}^2 \lambda_{\rm WZ}^2 \cdot \kappa_{\gamma}^2 (\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{\rm WZ})$ $\kappa_{\rm ZZ}^2 \cdot \lambda_{\rm WZ}^2$ $\kappa_{\rm ZZ}^2 \lambda_{\rm WZ}^2 \cdot \lambda_{\rm WZ}^2$ $\kappa_{\rm ZZ}^2 \lambda_{\rm WZ}^2 \cdot \lambda_{\rm FZ}^2$					
ZH	$\kappa_{\mathrm{ZZ}}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{ m ZZ}^2$	$\kappa_{ m ZZ}^2 \cdot \lambda_{ m WZ}^2$	$\kappa_{ ext{ZZ}}^2 \cdot \lambda_{FZ}^2$		

Custodial Symmetry $\lambda_{WZ} = k_W/k_Z$

- Move to fit of RATIOs (can relax assumption on total width)
 - $\lambda_{WZ} = \kappa_W / \kappa_Z$
 - Two additional parameters λ_{FZ} κ_{ZZ} in the fit but with small correlation with λ_{WZ}
 - dominated by relative WW and ZZ yields and by BR $\gamma\gamma$ that scales mainly as κ_W^2

Loop Couplings κ_g vs κ_{γ}

A Natural Higgs is not the SM Higgs

- Hierarchy problem related to top loop same that contributes to gg coupling
- Assumptions in κ_g vs κ_{γ} fit:
 - Direct Coupling to known SM particles assumed to be as in SM:
 - $\kappa_h = \kappa_W = \kappa_Z = \kappa_\tau = \dots = 1$
 - $\kappa_{\rm H} \sim 0.9 + 0.1 \, \kappa_{\rm g}$
 - No extra contributions to $\Gamma_{\rm H}$ (only known SM and gg)

Loop Contributions κ_g vs κ_{γ}

___ 69% CL

Agreement with SM prediction at better than 20

Couplings summary CMS

Overall good compatibility with SM predictions

Model parameters	Assessed scaling factors (95% CL intervals)		
λ_{wz}, κ_{z}	$\lambda_{ m wz}$	[0.57–1.65]	
$\lambda_{wz}, \kappa_z, \kappa_f$	λ_{wz}	[0.67–1.55]	
$\kappa_{ m v}$	$\kappa_{ m v}$	[0.78–1.19]	
κ_f	κ_f	[0.40-1.12]	
$\kappa_{\gamma}, \kappa_{g}$	κ_{γ}	[0.98–1.92]	
	κ_g	[0.55–1.07]	
$\mathcal{B}(H \to BSM), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00–0.62]	
$\lambda_{\mathrm{du}}, \kappa_{\mathrm{v}}, \kappa_{\mathrm{u}}$	$\lambda_{ m du}$	[0.45–1.66]	
$\lambda_{\ell q}$, $\kappa_{\rm v}$, $\kappa_{\rm q}$	$\lambda_{\ell q}$	[0.00–2.11]	
	$\kappa_{ m v}$	[0.58–1.41]	
	κ_b	[not constrained]	
$\kappa_{\rm v}, \kappa_b, \kappa_{\tau}, \kappa_t, \kappa_g, \kappa_{\gamma}$	$\kappa_{ au}$	[0.00–1.80]	
	κ_t	[not constrained]	
	κ_g	[0.43-1.92]	
	κ_{γ}	[0.81–2.27]	

best fit